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DIAGNOSIS OF RHEOLOGICAL PROPERTIES OF VISCOELASTIC-- 

PLASTIC MEDIA DURING THEIR FLOW IN PIPES 

R. M. Sattarov UDC 532.595.2+135 

A method is proposed for diagnosing the viscoelastic--plastic properties of a 
medium. 

Methods are available [1-3] for determining the relaxation properties of viscoelastic-- 
plastic media, but the models used in these papers are generally not justified. Because of 
the complexity of the internal structure of such media, this justification is very difficult. 
Therefore, methods permitting first a reliable diagnosis of the internal structure of such 
media and then a determination of their parameters are of important theoretical and practical 
interest for the analysis and optimization of technological processes related to the flow of 
viscoelastic--plastic media in pipes and channels. 

io Let us consider pipe flow of a viscoelastic--plastic medium whose rheological equa- 
tion is described by the following model: 

OT _~ ( OV ~ azV ) 
0 ~ - -  ~o = P  q T k  . 

Ot -&r atOr 

In writing this relation it is assumed that the velocity gradient and the stress are stabi- 
lized along the length. 

It should be noted that this model was employed in [4] to describe bituminous mineral 
conglomerates such as asphalt concretes and their components. 

The differential equations of motion for a viscoelastic--plastic medium in an elastic 
pipe have the form [i] 

0 02W OW 2% 1 (a_~z _i_00zP) ] 
at z + ( l  + 2 a ~ ) ~ +  2aW + R = - -  p OtOz 

PC z aW OP 
Oz at ' 

2a : 8p/pR 2. 

(i) 

The diagnosis of the viscoelastic--plastic properties of a medium is based on the solu- 
tion of the differential equations (i) or, under certain assumptions, on the solution of the 
first of these equations. By using calculated moments the dependence of certain relations 
of the moments type on parameters characterizing the viscoelastic properties of the medium 
can be written in analytic form, and a harmonic analysis can be made. 
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2. Suppose a viscoelastic--plastic medium flows along the z axis in a pipe. We assume 
that at t =0 the medium is at rest. At a certain instant the pressure drop along the pipe 
axis is changed abruptly to the constant value (Po -- P~)/L. We assume that the velocity 
remains constant along the length of the pipe and varies according to a known law. Under 
these assumptions the motion of the medium is described by the first of Eqs. (i) whose solu- 
tion for the initial conditions 

w (0) = o, --=dW (0) o 
dt 

W _ 

has the form 

2%L 
Po--Pl---- 

R 
For t+~ W ~ =  2apL 

2zoL 
P o -  P ~ -  ---~ ( 1 + k~____.L__ ek,t kt 

2apL \ k t -- k~ [ k I -- k~ 

--(1 + 2a7.) +_ V(1 + 2aZ) 2 - -  8aO 
kl'~ ---- 20 

e ha) , (2) 

The zero and first moments are calculated with the formulas 

w i = ; l W ~ - - W ( t ) l t ~ d l ,  i = 0 , 1 .  
0 

By substituting (2) into (3) and making some transformations, we obtain 

2%L 
Po--P~ 

R l + 2 a k  
w~ 2apL 2a ' 

2ToL Po--P~---- 

w ~ =  2apL 2a ] ~ a  " 

(3) 

To diagnose the viscoelastic--plastic 
ing relations: 

wt l + 2 a L  0 

w o 2a l + 2 a A  

Wo l q-2ak 
W~ 2a ' 

W~pL 1 
2%L 2a 

Po--PI---- 
R 

properties of the medium, we introduce the follow- 

(4) 

(5) 

(6) 
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TABLE i. Results of First Series of Experiments 

%oi, 2a, 
N.nT- 2 88C - I  

33 6 

33 6 

bt, N "  
We, 133 ~t , ,  [1] �9 

see �9 m "a sec 

0,37 

0,37 

109 37455 

37 14349 

W~oL 

2ToL, 
P~ R 

sec 

0,17 

0,17 

-w]- ,S~C 

346 

381 

I wo 

346 

381 

X,SeC 0, Se( 

346 0 

381 0 

Analysis of (4)-(6) shows that the following conditions can be satisfied: 

I. wt _ Wo _ W = p L  1 ( 0 = 0 ,  ~ = 0), 

Wo W~ Po -- Pt -- 2~~ = 2a 
R 

II.  wi =/= Wo _ W . p L  __ 1 ( 0 ~ 0 ,  ; ~ = 0 ) ,  

Wo W| Po -- Pl -- 2%__.~L 2a 
R 

w~ Wo W~pL 1 = (0 = O, ~.--/=0), 
III .  - -  = - -  =/= 2*oL 2a 

Wo W~ Po -- Pt 
R 

Wo W=pL 1 (0 ~ O, s =/= 0). 
IV. w t  4 = ~ 4 =  2%L = 2~-  

Wo Po - -  P l  - -  -- 
R 

Using the law of variation of the velocity for a constant pressure drop, the moments 
are calculated with Eq. (3), and then the ratios wl/wo, wo/W~, W~pL/(Po -- PI -- 2ToL/R) 
(To and 2~ are determined from Eq. (6) for two steady flow conditions), which must satisfy 
one of the conditions I-IV. Knowing the values of these ratios, we determine the viscoelas- 
tic properties of the medium from Eqs. (4) and (5). 

To test the proposed method of diagnosis, we consider the flow of a high-viscosity oil 
with a density p = 0.8 g/cm 3 in a pipeline 630 m long and 2 in in diameter (experimental data 

taken from [i]). Figure la shows curves for the flow rate at constant pressure P~ = 0 
at the outlet and Po = 26.1 atm (curve i) and Po = 19.6 atm (curve 2) at the inlet. Table 1 
shows the calculated results. It is clear from the table that this oil satisfies condition 

III, i.e., it is a viscoelastic--plastic medium described by the model 

Z - - , o =  p - 6 ~  �9 
OtOr 

3. It is assumed that at t =0 the medium is moving with the average velocity Wo. From 
t =0 the pressure drop is varied according to a definite law aP/p3z =f(t), with the time 
dependence of the velocity of the medium assumed known. The problem reduces to that of 
solving the first of Eqs. (i) with the initial conditions 

w ( o ) =  Wo, dW(O) _ o. (7) 
de 

The Laplace transform of the first of Eqs. (i) under conditions (7) is 

2% _ (1 -60s)f*--Ofo,  [ 2 a +  (1 + 2a~) s -60szlW * -- [(1 -6 2a~) + Os] W o -6 oRs (8) 

where  W* (s) == t" W (t) e- ' tdl;  f* (s) = .([(t) e-stdt;fo = [(0). 
b o 

Using the series expansion of exp(--st), it is easy to show that 

W* 
s2 

W~s [W ( t ) - -  W~] e -stdt  = Wo--SWt -6 ~. w 2 - - .  . . , 

0 

(9) 
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TABLE 2. Results of Second Series of Experiments 

L r to, IV. 2~, pO,, p~, I L . H . S . L . H . 8 .  I. 
T, ~ m=Z sec -~ atm. atin.  Ptl' 2 P~' .J(5.10), (5-I~). ,] 0,see z,sec 

see see tin .sec atin �9 see ~ Isec- i see-* j 

40 

60 

I " t 9,723.106 6,425. I 11000 --33,3--64,0 --451,4 --897,7 106 15 

8900 [--27,6[--55,6 --306 --692 8,868.106 6,378-10n 14 

i s2 f* f~ [[(t)--f=le-'edt= Fo--sF,+ -~. F2- - . . . ,  
S �9 

0 

409 

213 

( l O )  

w h e r e  wi = .~ [W( / ) - -W=]  Fdt; F~ = f[ /c( t ) - - [=]  tidt;f==[(oo);i=O, I, 2 . . . .  
0 0 

By substituting (9) and (i0) into (8), making some transformations, 
ficients of identical powers of s, we obtain 

2aW~ = [| - - -  2% 
9R ' 

2awo + (1 + 2aX)(W= - -  Wo) = 0 (f= - -  [o) + Fo, 

0 (W= - -  Wo) + (1 + 2a~,) wo - -  2awi = OFo - -  F~. 

We transform (11)-(13) by introducing the following relations: 

FIW= (W.  - -  Wo) + Fowo W .  - -  ([~ - - -  

W.'wt (Woo - -  Wo) 

and equating coef- 

(11) 

(12) 

(13) 

9R _ 2a, (14) 
W~ 

2,0 \ 

) W2~ ([~o - -  [o) Wo + (W= - -  W o - -  Fo)(W. - -  Wo) 9R = 2 a - -  0 (15) 
wi (W~ --  Wo) 

F t + w o _ 2 a _ 2 a ~  Wo _ 0  W|  o - F o  
w, w~ wi (16) 

From the relations obtained, the following conditions can be satisfied: 

FIW~ (W| _ Wo) + FoW~wo __ ( [o . . 2 % )  2% 
I. Fl + w~ _ oR w~~ _ [ "  oR - 2a 

W| w, W| (W= - -  Wo) 

FiWoo(W__Wo)+~FoW~wo__([o~ 2%)9R w~ foo 2% 
_ 9R = 2a 

II. F~ + wo 4= W| t (Woo Wo) --  W~ 
W i 

FiWoo(Woo--Wo)+FoW|174 2 x o )  2~o 
III. Fi -6 wo=/= 9R " ~'z~ [~ oR 2a 

w----i-- W~w~ (W~ - -  Wo) =# W~ - 

(0 = o, ;~= 0), 

(0 = 0, ~ . # 0 ) ,  

Processing the curves shown in Fig. la by formulas (14)-(16) gave the same results as 
in the preceding paragraph. Thus, we can assume that the methods proposed are satisfactory 
for the diagnosis of the relaxation properties of viscoelastic--plastic media. 

4. Suppose a pipeline has been operating for a long time in a periodic regime as a 
result of a harmonic variation of the pressure drop. Then the pressure drop can be written 
in the form 

1 O P _  P o - - P t = A o + A i c o s m t "  (17) 
p Oz pL 

The solution of the first of Eqs. (i) under condition (17) has the form 

W =  Ao 2xo + AI sin (cot-- (p + r (18) 
2a 2ap L co IZ,A 
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IZml = [ (1-}- 2aX)Z + (00) 2 a ) 2 ]  1/2 
0) 

2a 
0) l + 2 a L  0 ~  1 

s i n ~ - -  lZ~l~/2 , c o s y -  IZ~ll/2 , s i n ~ -  [Z~[1/2 , c o s ~ =  IZ~ll/2 
The p a r a m e t e r s  2a and To a r e  d e t e r m i n e d  u n d e r  two f low c o n d i t i o n s  c o r r e s p o n d i n g  to  a 

stationary velocity distribution. 

The relaxation parameters e and % are diagnosed by using the following relations 
obtained from the harmonic component of (18) under the assumption that e~ << 2a/~: 

[Z~l sin ( ~ - - - ~ ) = -  ( 2a + 2a~0@ , a  (19) 

IZml cos(w - , )  = 1 + 2 a ( X - -  0). (20) 

The calculations of the left-hand sides of Eqs. (19) and (20) are based on the proces- 
sing of pressure and velocity data. An analysis of Eqs. (19) and (20) shows that 

2a 
I. [Zm[ s in  ( 9  - -  ~) -- , [Zm[ cos  ( 9 - -  ~ )  = 1 (0 = O, k = 0) ,  

0) 

2a 
II. IZ~l sin (9 - -  ~) , IZ~l cos ( 9 - -  ~) > 1 (0 = O, Z ~ 0), 

0) 

III. lZ~l sin (q~ - -  , ) - -  
2a 

, I z A  cos (q~ - ~)  < I 

Iv.  IZ~l sin (9 - ~) =# - -  - -  
2a 

, IZ~l  cos (qD - -  , )  <> 1 

( 0 # O ,  x=o), 

(o =/= o, ~ ,#  o). 

By solving Eqs. (19) and (20) for % and 0, we obtain 

O={--[[ZmlCOS(~--~)--l]0)@V/[]Zm]cos(q~--~)--l] 20)2 -4.2a0)[lZmlsin(r 2a j} {2.2a0)}-L ( 2 1 ) 0 )  

= IZml cos (9 - -  ~) - -  1 -}- 2a0 (22)  
2a 

It is clear from (21) and (22) that the accuracy of the relaxation parameters being 
diagnosed and determined depends on the amplitude and phase shift of the signal. Therefore, 
if there is considerable noise in the measured data, it is necessary to employ statistical 
methods of frequency characteristics [5]. We propose a method for computing the amplitude 
and phase shift of the signal when noise is present in the measured data. It is assumed that 
the periodic component of the pressure drop and the velocity can be represented as the sum 
of a harmonic oscillation and noise: 

1 (Op)z A~ S i n ( o t - - ~ + , ) + e 2 ( t ) ,  AP = A, cos + (0, 0)IZ   

where El(t) and s2(t) represent stationary random noise with M[s1(t)] =H[~2(t)] =0. Then 
by following [6], the following relations are calculated: 

T 

R,~ = limr~ rl SWNit) AP(t)dt-- 20)A~ sin (q~-- q ~ ) ' t Z m [  (23) 
0 

T 

R~3 = lim 1 ~WN(t)APo(t)dt = A____~ cos(q~__~)) ' (24) 
r ~  r 20) lZml 

0 
T 

R , i = l i m  1 j ' w N ( t )  W~v( t )d t_  A~ 
: r ~  T 20)zlZmp ' (25) 

0 

where APo(t) =At sin~t, R12 and R13 are cross-correlation functions, and R11 is an autocor- 
relation function. 
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The right-hand sides of the last equations are functions of the parameters of the prob- 
lem, and the left-hand sides are determined from experimental data. It follows from (23), 
(24), and (25) that 

1/2(R~z  + R~3) tg(~--@) R , ~  IZ~l= A, Ai V R~t ' Rt3 ' 2 ~ R ~ 2 + R  2 13 

By using Eqs. (19) and (20) and the formulas derived, the viscoelastic properties of 
the medium can be diagnosed. 

Since there are no data, a mathematical experiment was performed to diagnose viscoelas- 
tic properties during the periodic motion of media in pipes. The input data were taken as 
follows: To =500 mg/cm 2, 2a =i sec -~, I =500 sec, 0 =I00 sec, ~=10 -3 sec -I, 9 =i g/cm 3, 
L=I000 m, Ao =I m/sec, AI =0.5 m/sec. 

After the values of the velocity were calculated with (18), the values of the pressures 
and velocities were obtained with an error of no more than 10%. By processing the distorted 
pressure and velocity curves the values 0 = 124 sec and I =604 sec for the relaxation para- 
meters were found from Eqs. (21) and (22). The values of these quantities found by a statis- 
tical calculation were 0 =105 sec, ~ =515 sec. 

Thus, the calculations performed show that the proposed method of diagnosing and deter- 
mining the relaxation parameters of a medium is in good agreement with the input data. 

5. After a constant flow rate of the viscoelastic--plastic medium was established 9 
the pipe outlet was closed, and pressure curves were measured at both inlet and outlet. In 
this case the process is described by Eqs. (i) with the following initial and boundary con- 
ditions: 

W (O, z ) =  Wo, P(O, z ) :  Pto P~o--P~o z, 02P 
L ~ t=o 

P(t, O) = P~(t), P(t, L) = P2(t). 

=0, 

The supplementary condition W(t, L) = 0 is specified for the diagnosis and determination 
of the relaxation properties of the medium. By solving (i) for P(t, z), we obtain 

Oap O2P . OP & (0 .  OaP a~P ] 
0 at 3 +(1  + 2 a K ) - ~ - + 2 a  a~-= _ ataz----- ~ q----~z2 j �9 (26) 

The i n i t i a l  and boundary c o n d i t i o n s  fo r  P ( t ,  z) a re  w r i t t e n  in  the  form 

p (0, z) = Pro 

P(t,  

The supplementary boundary condition 

Pio - -  P2o OP I = O, 02P [ z, = 0 ,  (27) 
L Ot [ t = o  ~ . , = o  

O) = P,(t), P(t ,  L) = P2(t). (28) 

Taking account of 

takes the form 

(o a2P a__P_P'~I 2"~o 
ataz + a z )  I = - -  z=L R 

(27) and (28),  the  Laplace t r ans fo rm of  (26) i s  

_ _  ( Pto - -  P~o 
P* (s, z) = Ge  ~ "6 C.,e - ~  6 1 P~o 

- s ~ L 

p $ ( s ) _ P ~ ( s ) e  -~L Pi~ (I - -  e-~L) + Pio--P2.  
S $ 

6 t = C:L e -o~L 

'--P$ (s) + P~ (s) e ~L -6 Pt~ 
8 

C 2 = e~L e -r 

~ 2 =  s [ 2 a + s ( l + 2 a ~ ) + s 2 0 ]  
c2(1 + sO) 

Plo--P2o 

(29) 

Z), (30) 
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P* (s, z) = S P  (t, z)e-otdt; P'1,2 ( = I P',~(O e-udt" 
0 0 

as 

Using (30), the transform of the supplementary boundary condition (29) can be written 

P* 'e ~c e -c~z) - -  2P~ - -  P2o (e~Z + e-~L ) + 2 p~o p~o - p~o 2-~o 2t  + 
OP* ~ z s s L R 
-~z = = e~L__e -~L = cos(1 + s O ) - -  (31)  

We introduce the k-th order moments of the functions Pi(t) -- Pi~ in the form [7] 

0 

~h 

[P~ (t) -- P~=] ~ .  dt, P ~  = l i m P ~ ( t ) ,  i = 1 ,2 ,  k = O, 1, 2 . . . .  

The following relations hold: 

p,_ Pi= 
, q-  Po -- sP] +s2P~ . . . .  (32) 

S 

Using the series expansion of exp(aL) and limiting ourselves to six or seven terms 
(since aL is small), making some transformations, using (32), and equating coefficients of 
identical powers of s, we obtain the following relations: 

6 2 p 2 = - - 2 P ~ o + P l = - - P i o  L z 

PI~  - -  P2~ - -  2roL , (33)  
R 

P t o - - P ~ o - - P I ~ @ P 2 ~  = 2a, (34)  
pLWo 

c z P 2 ~ - - P 2 o - - P l ~ + P l o  c z 
2 a q - 6 0 2 p 2 = _ _ 2 P ~ o + p ~ = _ _ p i o  L z ' (35)  

2 0 - -  

L2 (2P2=--2Peoq-Pl=- -P io )  
cZ P I - - P ~ q -  6c----g- = 2 a  

L 2 L__~2 (p2 _p2o) P 2 ~ - - P ' = - - P ~ o q - P i o _ p ~ _ 9 p  ~ 
3c z pLWo 

p ~ _ p $  7 2aL~(pz=__p~o__px=q_p ,o  ) 
c z 60 c z 

+ 2 0 0 - -  
LZ L--~2 tP~--P2o)t  P 2 ~ - - P , = - - P 2 o - [ - P I o  ~ P ~  9P~ 

3c 2 9LW o 

10 2P2=--2P2o@Px=--Pto  

- - - - 2 a ~ 3  --(P~--P~o)L----~ P ~ - - P ~ - - P 2 o + P ~ o  P~--9P~. 
3c 2 9LWo 

(36) 

Equation (34) was derived on the assumption that the velocity of the medium for steady 
motion corresponds to the relation 

Wo = Pto--P2o 2% 
2apL 2apR" 

The limiting shear stress of the liquid To can be determined from (33). Analysis of 
(34), (35), and (36) shows that if the left-hand sides of these equations are equal to one 
another, e =0 and % =0. If this is not the case, 0 #0 and % #0, or 6 #0 and ~ =0. When 
the left-hand side of (35) is equal to the left-ha~d side of (34), but not equal to the 
left-hand side of (36), 0 =0 and X #0. The coefficient of friction 2a is found from (34). 
The relaxation times are calculated with formulas obtained from (35) and (36): 
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0= 

o o 
P1 -- P2 -- -- 

2aL 2 
(2P2 ~ - -  2P2o @ P I ~ - -  Pio) 

6c z 

P2 ~ - -  P2o - -  P1 ~ § P i o  

(P2 ~ - -  P,-,o) ~ __ pO __ 9pO @ 
% 20c z p L W o  -),. 

2aL---~z (2P2= - -  2P2o + P ,  = - P~o) 
6c z 

@ 0 p ~  __ pO2 607 2 a L  z c  ~ (P2~ - -  P 2 o - -  P I  oo -1- Plo) - -  

---> 

- -  PI + PJ LZ 2 - -  (2P2= - -  2P2o @ P ,  ~ - -  Pto) 
6c z 

The pressure recovery curves [i] on a capillary of length L =160 cm, radius R=0.2 cm, 
with high-viscosity oil shown in Fig. ib were processed by the proposed method of diagnosis. 

Table 2 lists the results of the calculations. It is clear from the table that this 
oil is a viscoelastic medium described by the model 

o (ovo  a v) 
8 - -  @'~  = 'u' t @ ~ '  afar 

In conclusion, it should be noted that the relaxation properties of viscoelastic--plas- 
tic media can also be diagnosed and estimated on full-scale installations such as pipelines 
and wells. 

NOTATION 

T, shear stress; Co, limiting shear stress; 3V/3r, velocity gradient; e, %, relaxation 
time; t, time; W, velocity averaged over cross section of pipe; P, pressure; R, pipe radius; 
c, wave velocity in pipe; Ao, mean pressure drop; At, amplitude of oscillation; st(t), E2(t), 
stationary random noise; Wo, w~, Fo, F~, Pi k, determined moments of prescribed functions. 
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